Drinking coffee in space is surprisingly
tricky. Physicists researching the strange behavior of fluids on board
the International Space Station have invented a zero-g coffee cup to
make it little easier to swallow.
High above our planet in the realm of satellites and space stations, the familiar rules of Earth do not apply. The midday sky is as black as night. There is no up and no down. Dropped objects do not fall, and hot air does not rise.
Of all the strange things that happen up there, however, it is possible that the strangest happens to coffee.
Physics professor Mark Weislogel of Portland State University has given a lot of thought to coffee (and other fluids) in space, and he describes what happens:
“For starters,” he says, “it would be a chore just getting the coffee into the cup. Absent the pull of gravity, pouring liquids can be very tricky.”
“But, for the sake of argument, let’s suppose you are on the space station and you have a cup of coffee in your hand.” The most natural thing would be to tip the cup toward your lips, but when you do….
“The coffee would be very hard to control,” he continues. “In fact, it probably wouldn’t [come out of the cup]. You’d have to shake the cup toward your face and hope that some of the hot liquid breaks loose and floats toward your mouth.”
On the bright side, you will probably be wide awake by the time the cup is empty.
Coffee is not the only liquid that misbehaves in space. Cryogenic fuels, thermal coolants, potable water and urine do it, too. The behavior of fluids is one of the most un-intuitive things in all of space flight.
This poses an extreme challenge for engineers designing spacecraft systems that use fluids. “Our intuition is all wrong,” laments Weislogel. “When it comes to guessing what fluids will do in new systems, we are often in the dark.”
To develop a better understanding of fluids in microgravity, Weislogel and colleagues are conducting the Capillary Flow Experiment onboard the International Space Station. For instance, one of the devices in their experiment suite looks at “interior corners.” If two solid surfaces meet at a narrow-enough angle, fluids in microgravity naturally flow along the join—no pumping required. This capillary effect could be used to guide all kinds of fluids through spacecraft, from cryogenic fuel to recycled waste water. The phenomenon is difficult to study on Earth, where it is damped by gravity, yet on the space station large scale corner flows are easy to create and observe.
High above our planet in the realm of satellites and space stations, the familiar rules of Earth do not apply. The midday sky is as black as night. There is no up and no down. Dropped objects do not fall, and hot air does not rise.
Of all the strange things that happen up there, however, it is possible that the strangest happens to coffee.
Physics professor Mark Weislogel of Portland State University has given a lot of thought to coffee (and other fluids) in space, and he describes what happens:
“For starters,” he says, “it would be a chore just getting the coffee into the cup. Absent the pull of gravity, pouring liquids can be very tricky.”
“But, for the sake of argument, let’s suppose you are on the space station and you have a cup of coffee in your hand.” The most natural thing would be to tip the cup toward your lips, but when you do….
“The coffee would be very hard to control,” he continues. “In fact, it probably wouldn’t [come out of the cup]. You’d have to shake the cup toward your face and hope that some of the hot liquid breaks loose and floats toward your mouth.”
On the bright side, you will probably be wide awake by the time the cup is empty.
Coffee is not the only liquid that misbehaves in space. Cryogenic fuels, thermal coolants, potable water and urine do it, too. The behavior of fluids is one of the most un-intuitive things in all of space flight.
This poses an extreme challenge for engineers designing spacecraft systems that use fluids. “Our intuition is all wrong,” laments Weislogel. “When it comes to guessing what fluids will do in new systems, we are often in the dark.”
To develop a better understanding of fluids in microgravity, Weislogel and colleagues are conducting the Capillary Flow Experiment onboard the International Space Station. For instance, one of the devices in their experiment suite looks at “interior corners.” If two solid surfaces meet at a narrow-enough angle, fluids in microgravity naturally flow along the join—no pumping required. This capillary effect could be used to guide all kinds of fluids through spacecraft, from cryogenic fuel to recycled waste water. The phenomenon is difficult to study on Earth, where it is damped by gravity, yet on the space station large scale corner flows are easy to create and observe.
No comments:
Post a Comment